RISC-V Linux

Getting started with Embedded Linux on RISC-V

- CREATING A SMARTER - - : -
‘@ Waplce il Mty Markus Jamback & Pauli Oikkonen

Wapice introduction

Wapice in Short

Full-service Software Company

Solutions used by domain leading industrial
companies around the world.

Digitalization Forerunner

We offer close technology partnership and
digital services to our customers.

Succeeding Together

The success of our customers is vital to us
as it is also a precondition for our own
success.

| Contact us via
‘@ © Wapice Ltd. www.wapice.com/contact/company

FINLAND
VEELT:
Helsinki
Hyvinkaa

IVEWE

Oulu
Seinajoki
Tampere
Turku

o O o O o O O O

https://www.wapice.com/contact/company

Technology & Digitalization Services

Analytics, Al and

Big Data Cloud Solutions Consulting
Electronics Design Internet of Things .
& Embedded Solutions Cyber Security

Systems e

Web and Mobile

Solutions DevOps

Design Services
For more information visit Www.wapice.com/services

‘@ © Wapice Ltd.

https://www.wapice.com/services

Preliminary tasks for
workshop participants

Prerequisites

» Basic knowledge about Linux in general

» Running commands in terminal
» Desktop Linux environment
» 40 GB of free disk space

» Material downloaded and extracted

Instructions

Required material available in Funet Filesender

Participants attending to workshop portion should have the link

Setup one of the alternatives for Linux desktop environment

Download and import provided VirtualBox OVA (password: ubuntu)
Make sure to use latest version of VirtualBox
Importing OVA: File -> Import Appliance...

Any OS supported by Yocto with dependencies installed (no support if
this causes problems)

See https://docs.voctoproject.org/singleindex.html#system-requirements

Download and unzip workshop material
Download and unzip build cache

Execute initialization script

wget workshop.zip
unzip workshop.zip
cd workshop

wget sstate-cache.zip

unzip sstate-cache.zip

./init.sh

https://docs.yoctoproject.org/singleindex.html

Motivation

Advantages of RISC-V in embedded systems

Licensing: free and open to use for everyone
Open ecosystem: possibility for IP reuse
Simplicity: small and fixed base Instruction Set Architecture (ISA)

Extensibility: multiple standard extensions to ISA, also custom ones are
possible

Versatility: both soft CPUs and SoCs available

Modern: designed to handle modern compute workloads without legacy
burden

Advantages of Linux in embedded systems

Licensing: royalty-free and open-source

Hardware support: all major CPU architectures (RISC-V) with Memory
Management Unit (MMU)

Networking: robust TCP/IP network stack and wide range of other protocols

Modularity and scalability: from supercomputers to small embedded
systems

Commercial support: huge development effort around the ecosystem
Software and libraries: most applications already run on Linux

Tooling: reasonable to use Linux in actual products

‘@ © Wapice Ltd.

10

Goals of this workshop

» Introduction to used tools
» Running Linux on emulated RISC-V environment
» Demonstrating same thing on actual hardware

» Developing application software to run on RISC-V platform

11

Embedded Linux in general

Linux distribution

» In addition to the Linux kernel a functional operating system also requires
libraries, utilites and tools

> The whole collection is called Linux distribution

User application User application

Utilities, tools, libraries, C__ Distribut
GNU C library, std C++, SSL, ... IStribution

Hardware platform

13

Making custom Linux distributions

> General purpose distribution like Ubuntu?

» Custom distributions especially important for embedded systems
» Limited resources
» Efficiency
» Extensibility

» Building a distribution from scratch is not an easy job
» C-library (glibc, musl, ...)
» Init system (systemd, sysvinit, ...)
» Libraries and utilities (BusyBox, GNU utils, ...)

» Dependencies between them

‘@ © Wapice Ltd.

14

Yocto Project)/OCtO :

: : oL : PROIJECT
» "The Yocto project. It's not an embedded Linux distribution,

It creates a custom one for you."

» Features
» Widely used in the industry
» Very flexible and extendable
» Plenty of ready-made recipes

» Challenges
» Steep learning curve
> Slow build times

» Yocto documentation
» Official: https://docs.yoctoproject.org/
» Poky source code: https://git.yoctoproject.org/cgit/cgit.cgi/pok

2 o Wapiceltd 15

https://docs.yoctoproject.org/
https://git.yoctoproject.org/cgit/cgit.cgi/poky/

Core components of Yocto

OpenEmbedded Core

» Collection of recipes for building common packages

BitBake

» Build engine for executing statements defined in the recipes

Poky

» Reference distribution for getting started
» Contains OpenEmbedded Core and BitBake

N

N

N

And some others

N

> Not so important for today

‘@ © Wapice Ltd.

16

Getting started

envsetup.sh

Yocto repository and sstate cache should init.sh
be already downloaded

Directory structure needs to be exactly

the same as here (sstate-cache.zip not
needed)

Initialization done with simple init.sh
script

Could be Git submodules etc.

‘@ © Wapice Ltd.

Internals of Yocto

Recipes inside the repository

» Recipe describes how a piece of software is built and packaged
» How to fetch sources
» The configuration and build commands

» How the softwareis installed to the filesystem

» Recipes for dependency tree that describes the order of the build process

» Dependencies can be both
runtime dependencies as QI HINETH oISl Top-level recipe
well as build dependencies

busybox dropbear

kern-tools-native

‘@ © Wapice Ltd. 19

Layers inside the repository

» Recipes are grouped in layers for easier management and re-use
» Layeris defined by directory that contains layer. conf file

» Yocto layer stack is defined in bblayers.conf

} Application recipes

} Machine dependent recipes
poky/meta-poky
Yocto provided recipes
poky/meta

20

What happens during the build process

» Fetch - get the source code
» Extract — unpack the sources

» Patch - apply patches for
bug fixes and new capability

» Configure - set up your
environment specifications

» Build - compile and link

» Install - copy files to target

directories

» Package - bundle files for

installation

‘@ © Wapice Ltd.

User
Configuration

Meta
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Upstream

Local
Project
Releases iy
Source Materials
Source
Fetching
Output
Analysis for
Patch package
Application splitting plus
package
relationships
Config/
Compile/
Autoconf
as needed

SCMs
(optional)

.deb
generation

.rpm
generation

.ipk
generation

Open Embedded Architecture Workflow

Upstream Source | Output Packages

Metadata/Inputs Process Steps (tasks)
Build System . Output Image Data
Package Feeds
Image SDK

Generation Generation

Picture: https://docs.yoctoproject.org/singleindex.html 21

Using sstate cache

» The sstate cache contains
the results of each build
step

» With sstate cache the
build can skip directly to
Image creation step

> Reduces build times
significantly

» Build to generate sstate
cache took ~4h

‘@ © Wapice Ltd.

User
Configuration

Meta
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Upstream
Project
Releases

Source
Fetching

Patch
Application

Config/
Compile/
Autoconf

as needed

Local
Projects

Source Materials

Output
Analysis for
package
splitting plus
package
relationships

SCMs
(optional)

.deb
generation

rpm
generation

.ipk
generation

Open Embedded Architecture Workflow

‘ Output Packages

Upstream Source

Metadata/Inputs Process Steps (tasks)

. Output Image Data

Build System

Image SDK
Generation

Generation
QA
Tests

Picture: https://docs.yoctoproject.org/singleindex.html 22

Executing the builds

Setting up the environment
New directories added to PATH etc.

Building image and SDK with BitBake
Builds will take ~20min

$ source envsetup.sh

$ printenv

$ bitbake core-image-sochub

$ bitbake -c populate sdk core-
image-sochub

Running custom Linux in
QEMU

Build results

» Image files available in » SDK files available in
build/tmp/deploy/images/cva6 build/tmp/deploy/sdk

images cvab

tmp deploy

oL
oo

core-image-

— >

o
Il
Il
o

core-image-

core-image- core-image- core-image- core-image- poky-glibc- poky-glibc- poky-glibc- poky-glibc-
sochub- sochub- sochub- sochub- sochub- sochub- Xx86_64- X86_64- XB6_64- X86_64-
vab.exts cvab.man... cva6.gem... cva6.tar.gz Bk wa6-202... core-ima... ore-ima.. core-ima... core-ima...
oL
oo = 0
core-image- core-image- core-image- core-image fw_
sochub- sochub- sochub- sochub- payload.elF
va6-202... cva6-202... cva6-202... cva6-202...
& & & Py i
Image Image— Image-cva6. modules— modules- w-boot.bin
5.12.18+4git bin 5.12.18+git cva6.tgz
000, . 0+094d3...

oL -
oo =

u-boot- u-boot- u-boot- u-boot-
cvaéb.elf cva6- cvab- initial-env
2021.01-r... 2021.01-r...

u-boot.elf
cvab.bin

- oL oL oL

oo oo oo

u-boot- u-boot- ulmage ulmage- ulmage-
initial-env- initial-env- 5.12.18+git cvaé.bin
cvaté cva6-202... 0+094d3...

‘@ © Wapice Ltd.

Emulator environment QEMU

QEMU is a generic and open source machine emulator (and virtualizer)

Allows to execute RISC-V operating system and programs on x86 machine

Dynamic translationis used to get good performance

Emulates every aspect of a working hardware environment

Emulates a full-featured RISC-V computer

Usually virtio hardware interface is used

Yocto has automatically built this for us

26

Running the finished
Image

Yocto provides wrapper script for
convenient QEMU usage

Used options defined in a configuration file

Usable RISC-V Linux environment for
general application development

Image configured with debug settings
username:root

password empty

‘@ © Wapice Ltd.

$ rungemu slirp nographic

(Linux boot output)

cva6 login: root
root@cva6:~# uname -a

root@cva6:~# poweroff

Discussion with audience:
Hardware vs. QEMU

Differences and similarities?

Discussion with audience: Hardware vs. QEMU

» Different boot setup

» Processor speed

» Hardware drivers

» Both support Machine, Supervisor and User privilege levels
> Both implement memory protection with MMU

» Different ISA extensions available

» CVAG6: RV64| (64-bit base instruction set), M (Integer multiply and divide), A (Atomic
instructions), C (Compressed instructions)

» QEMURISCV64:RV64I1, M, A, C, F (Single precision floating point), D (Double precision
FP)

‘@ © Wapice Ltd.

29

Demo

Genesys 2 with CVAG core

» Genesys 2 FPGA platform

» SoC Hub chips will have multiple CVA6 cores identical to the one running on
FPGA

» The kernel and rest of the OS running in QEMU also run unmodified on CVAG6

31

CVAG6

» CPU implementation
that uses the RISC-V ISA

» Sufficient to run Linux

» CVAG6 peripherals are
supported by Linux

» 16750 UART for serial

» Xilinx SPI for SD card

» U-Boot also supports
both after fixing some
driver oversights

‘@ © Wapice Ltd.

ETH

SIZE Conv

s

)

AXI CDC

o~

-~

N

AXI CDC

DDR

SPI

Kilirne SPI

SIZE Conv

-~

)

v

AXI 2 APB j AXI2APB

UART

Boot ROM

AXI 2 Mem

-~ o~

RTC

) 'y

AXl 4 - Crossbar > > CLINT

N

PLIC

o

Fa

Ariane

Picture: https://github.com/openhwgroup/cva6b

32

Genesys?2

Kintex-7 FPGA
Development Board

Chosen because CVAG6
offers out of the box
support for Genesys 2

Prebuilt bitstream

Picture: https://digilent.com/reference/programmable-logic/genesys-2/start

33

CVA6in Yocto

Supported by meta-openhw BSP layer in Yocto
CVAG support added by cva6.conf machine configuration file

Specific patches and configs for bootloader

Standard mainline Linux
Kernel configuredto include UART and SPI/SD drivers for CVAG6

Other miscellaneous configurations

‘@ © Wapice Ltd.

34

Setting up the board (and Genesys 2 kit)

» Bitstream from CVAG release onto

a USB drive

» Partition1: FAT, ariane_xilinx.bit
bitstream

> An SD card is used for mass
storage

» Partition 1: raw, fw_payload.bin
bootloaderimage

» Partition 2: ext4, uImage compressed
kernel

» Partition 3: ext4, core-image-

sochub-cva6.ext4 root filesystem
© Wapice Ltd.

SD card

OpenSBl
& U-Boot

Kernel

Rootfs

USB drive

bitstream

35

RISC-V boot process

Booting on the board

Boot ROM - OpenSBIl =2 U-Boot = Linux
No FSBL in this case

Extremely slow because SD access is slow on FPGA

U-Boot 2021.01 (Jan 11 2021 - 18:11:43 +0000)

CPU: rved4imafdc

Model: eth,ariane-bare

DRAM: 1 GiB

MMC: Xps-spi@20000000:Mmc@e: 8

In: uart@loeoeoee

Out: uart@loeoeoee

Err: uart@loeoeoee

Net: No ethernet found.

Hit any key to stop autoboot: @

4729011 bytes read in 292020 ms (15.6 KiB/s)

Booting kernel from Legacy Image at 83200000 ...
Image Name: Poky (Yocto Project Reference Di
Image Type: RISC-V Linux Kernel Image (gzip compressed)
Data Size: 4728947 Bytes = 4.5 MiB
Load Address: 80200000
Entry Point: 80200000
Verifying Checksum ... OK
Flattened Device Tree blob at 82200000
Booting using the fdt blob at exs8zz0e0080
Uncompressing Kernel Image
Using Device Tree in place at 00000OEO82200000, end 0OEEEOOO8220400f

Starting kernel ...

[0.000000] Linux version 5.12.18-sochub (oe-user@oe-host) (riscv64-poky-linux-gcc (GCC) 10.2.0,
GNU 1d (GNU Binutils) 2.36.1.202102092) #1 SMP Mon Jul 19 ©8:01:28 UTC 2821

37

RISC-V boot process User mode

terminology et

» A RISC-V CPU boots in M-mode
System calls

(machine mode), while kernel runs in
S-mode (supervisor mode) and
userspace in U-mode (user mode)

Supervisor mode

_ _ Linux kernel
» M-mode software remains in memory

after bootloader drops its privilege Supervisor
level to S-mode, providing basic Binary Interface

services similar to BIOS interrupts on _
%86 Machine mode Linux
_ _ OpenSBI drivers
» Kernel can call M-mode services via
Supervisor Binary Interface (SBI) OpenSBI
which is usually implemented by drivers

OpenSBI

Hardware

2 o Wapiceltd 38

RISC-V boot sequence for Linux

» Zero-Stage Bootloader (ZSBL) on CPU ROM loads FSBL (First Stage
Bootloader), from SD card on CVAG6

» FSBL loads OpenSBIl and U-Boot, OpenSBI stays in the background to
provide M-mode services
> OpenSBIthen runs U-Boot in S-mode

» U-Boot loads Linux kernel from SD and boots it, staying in S-mode

» Linux kernel executes init from root filesystem and runs it as the first
userspace process, in U-mode

‘@ © Wapice Ltd.

Developing C applications
for RISC-V

Yocto SDK

Running C applications in RISC-V

Yocto SDK provides tools required for cross-compiling to target system
Compiler, linker etc.
Libraries
Debuggers
QEMU
Environment variables

Other commonly used tools

Contents of the SDK is completely configurable

‘@ © Wapice Ltd.

41

Installing and using
the SDK

After populate_sdk stage, a toolchain
script has been generated
Executing it installs the SDK, by default
under /opt
To use SDK, source the script from /opt

This will initialize the SDK in your current
terminal

(In a new terminal)

$ cd build/tmp/deploy/sdk

$./poky-glibc-x86_64-core-image-

sochub-riscv64-cva6-toolchain-
3.3.2.sh

$ source
/opt/poky/3.3.2/environment-
setup-riscv64-poky-linux

$ printenv

(In the SDK terminal)

compiling the $ cd application
application s s

] . . $ $CC $CFLAGS $LDFLAGS main.c
Cross-compiler produces binaries for

RISC-V ISA |
bash: ./a.out: cannot execute binary
SDK sysroot is used during the file: Exec format error

compilation $ $OBIDUMP -f a.out

$./a.out

main.c

1 #include =<stdio.h=

2

3 int main()

4 |

5 printf("Hello, World!\n");
B return @;

7 1

Running the
application

Executable needs to be copied into
rootfs

Executing the binary is now possible
inside QEMU

$ cd build/tmp/deploy/images/cva6

$ sudo mount core-image-sochub-
cva6.ext4d /mnt

$ sudo cp a.out /mnt/home/root

$ umount /mnt

$ rungemu slirp nographic

(..)

root@cva6:~# ./a.out

Creating custom recipes

Same using recipes

Instructions for BitBake to
execute previous manual steps
Like any other recipe

The recipe is located in meta-
sochub/recipes-app/hello

main.c exactly the same as before

Needs to be added to image using
IMAGE INSTALL

Finished image will contain the hello
binary

‘@ © Wapice Ltd.

| L— main.c
L— hello 1.0.bb

hello 1.0.bb

1
2
3
4
5
b
7
8

=ldTa

ochub » recipes-app » hello hello_1.0.bb

SUMMARY = "Hello World application”
SECTION = "examples"
LICENSE = "MIT"
LIC FILES CHKSUM = "\
file://${COMMON LICENSE DIR}/MIT;md5=0835ade698e0bct8506ecda2f7h4f302"

SRC URI = "file://main.c"
S = "${WORKDIR}"

do compile() {
S{CC} ${CFLAGS} ${LDFLAGS} main.c -o hello
}

do install() {

install -d ${D}%{bindir}

install -m 0755 hello ${D}é{bindir}
}

$ rungemu slirp nographic

Running the .
exeCUtable root@cva6:~# which hello

_ root@cva6:~# hello
The executable was is actually already

installed to the rootfs

Executed just as any other command

Locatedin /usr/bin

‘@ © Wapice Ltd.

Using recipes vs. manual approach with SDK

» Both accomplish the same end result

» Matter of preference

» However, there are some typical procedures
» Standardtools, libraries and drivers installed using recipes

» Custom applications developed and installed using the SDK flow

‘@ © Wapice Ltd.

48

SoC Hub chip with Linux

Running Linux on the actual SoC Hub chip

More complicated boot process

N

N~

Changes required to low level software
) OpenSBI
» U-Boot

> Linux kernel

N

Different peripherals that may not have mainline support
> Devicedrivers

» Devicetree

Yocto support

N

‘@ © Wapice Ltd.

50

Conclusions

Conclusions

Yocto can be used to build custom Linux distributions

RISC-V and Linux is already a viable setup

Some extra effort may still be required

No differences to high-level application development
Tools handle different ISAs for us
Good thing!

SoC Hub's chip will require some more development work to port Linux

92

Questions?

53

- CREATING A SMARTER
@ wap’ce FUTURE TODAY

Visit wapice.com

